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Abstract—The series expansion of displacement in terms of simple thickness modes is used
to obtain approximate two-dimensional equations of motion for crystal plates from the three-
dimensional theory of elasticity. Approximate theories from the first to the fourth order are
presented. Dispersion curves for AT-cut quartz plate are explored and compared with the
solution of the three-dimensional equations for an infinite plate.

1. INTRODUCTION

The formulation of approximate, two-dimensional equations of motion is based on the
series-expansion method, Mindlin[l], using a power series expansion of displacement,
obtained a set of equations which accommodates the frequencies of the first five modes of
vibration. The increasingly complex mathematical forms in the formulation of higher
order approximations, when a power series expansion is used, led to an expansion of dis-
placement in a series of simple thickness modes for infinite plates{2]. The approximations
of successively higher orders are then obtained without any complication, because the sim-
ple thickness modes are orthogonal.

This procedure was applied in the analysis of the vibration of isotropic plates{3] and is
extended in this paper to the vibration of crystal plates. The dispersion curves for real,
imaginary and complex wave numbers are explored in detail for AT-cut quartz plate and
are compared with those obtained from Ekstein’s[4] solution of the three-dimensional
equations of elasticity for an infinite plate. The comparison reveals the close agreement
between the respective sets of dispersion curves and indicates that the solutions of approxi-
mate equations, for bounded plates, will give reliable results over the same applicable range
of frequencies.

2. THREE-DIMENSIONAL EQUATIONS

The variational form of the equations of motion, from which the two-dimensional
equations are to be deduced, is

[ (Toi= o) 847 =0 )
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where T;;, u; are the components of stress and displacement, respectively, and p is the mass
density. In (1) the integration is over the region V for independent variations of u;.
The constitutive equations are

Tij = Cijki Sui 2

Y

where the c;;;, are the elastic constants, S;; are the Components of strain and are expressed
in terms of the u; by
Sy = %(“j, i+ ui,j)‘ 3

3. SERIES OF TWO-DIMENSIONAL EQUATIONS

The faces of an infinite plate are taken at x, = 14, the middle plane in the x,, x5 plane
of an x; rectangular coordinate system. The displacement components u;(x;, t) are expanded
in an infinite series of the simple thickness modest as

2 nr
uj= n;)uj(") cos —2—(1 — 1) 4)

where n = x,/b and the ath order displacements 1™ are functions of x,, x, and time ¢ only.
Then, from (1) and (4), using the identities

1

[ sin 25— msin (1 = ) dy = 5,
1 2 2

! nn nz ®)
[ cos (1 = meos = (1 =) dn = 5,
and integrating over the interval (—1, 1) with respect to #, one obtains
S (e T m w  rw ) ™
L.ZO T =55 To™ + 3 F{ = puflh ) du,®dA = 0 (6)
where A is an area of a plate and
n L nm
T, = f_lT"fCOST(I —n)dn
— 1 . nm
T,"=] Tysin(1-mdy ™
-1

1

nm
F™= [sz cos 3 (1- ;1)] T T,(b) = (—=1)"T,{—b)
are defined as nth order components of stress with cos (n7/2)(1 — n) and sin(nz/2)(1 — 1)
as weighting functions, and nth order components of the face traction, respectively. Since
(4) must be satisfied for every area A4 and arbitrary éuj("’ then the nth order stress equations
of motion are obtained from (4) as

NI 1
1-'13"3 ~ 2% sz(") + 5 Fj(") = Pu§73r- (8)

+ Series of vibrational modes which are independent of x;, x; coordinates and correspond to traction
free faces (see Mindlin[1]).
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Defining
Sy = Huf?) + u
- nm €)]
Su(") = —3(52”‘](") + 52j“i("))
as nth order components of strain, one obtains from (3) and (4) components of strain
S= 3 |55 o5 T =)+ 5,sin T (1= )] (10)

Substitution of (10) into (2), then, in turn, into (7) yields the nth order stress-strain relations

a0
T j(") = Cijkl(skl(n) + ZoAmn Skz(m))
=

(11)
Tj(") = cijkl(skl(") + Y Awm Skt(m)) >
m=0
where

) 0 , m+ neven
[ sinZE—moos (U —mdn=Ap={  am (12)

-1 2 2 —y—, M + n odd.

(m* —n)n

Two sets of stresses and strains are introduced in this theory. The T,-j("’ components of
stress provide the linkage between nth and (n — 1)th order of equations while strain com-
ponents S, are supplemental,[3] to S;;”.

The plate -strain energy density, Wthh is defined as

1
U=: f d’1 =z f_ lcijklsijskl dy (13)
becomes
- 1 = —
v T2 Z‘ (T8, + T,{"5,) (14)

or

1 o) _ _ @
U= _2_ Z ”kl[sij(n)skl(n) + Sij(n)skl(") + ZO(A"'"S (")Sk (m) + A S (n)S (rn))] (15)

It can be noted that

oU - ou
) _ ) _
T” 5S;j(") Tij - asij(") . (16)

Similarly, the plate-kinetic energy density becomes

K= f puj u;, on = %pzu“)u;-?z- an

The uniqueness of the solution of the approximate equations is established[2, 3] in a
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way similar to that of Neumann[5]. The sufficient conditions, in the absence of discon-
tinuities and singularities, are listed in the previous paper[3], where also a theorem which
shows the orthogonality of two functions »,/ and ;" is presented.

4. TRUNCATION PROCESS AND ADJUSTMENTS
The approximate theories of various orders must be extracted from the infinite set of
two-dimensional plate equations. This is achieved by using the following truncation pro-
cess when for Nth order theory, with N any positive integer, is set

T, = T,™ =0 for n > N. (18)

From the approximate theory of order N one obtains the dispersion curves for the propa-
gation of straight crested waves in an infinite crystal plate with monoclinic symmetry, such
as AT—-cut quartz plate. By comparing the dispersion curves with those from the three-
dimensional theory of elasticity[2, 4], it is found that the approximate theory always yields
the “exact” cut-off frequencies since the simple thickness modes used in the series expansion
of the displacement are the exact limits of the three-dimensional theory as wave lengths
approach infinity. Two sets of dispersion curves match quite well for frequencies up to
Q = N + 1 and wave numbers |z| = N + I, where the dimensionless frequency and wave
number are defined by

5] )

w is a frequency, ¢ is a wave number, except for the lowest flexural and the lowest exten-
sional branches. Two correction factors, k; and k,, are introduced in the strain and kinetic
energy densities in order to achieve the better match of these branches:
2U = cijkl[Sij(O)Skl(O) + Sij(O)gkl(O) + k"808G + Sijmgkz(l) + 8508,
+ gij(Z)SH(Z) 4ot Sij(O)(AIOkISkl(l) + A3OS“(3) + )
+ Sij(l)(AZISkl(Z) + Ay Su™® + ) + 55%(4,, 850 + 45, Su®+ )
+ Sij(3)(A23 Skl(z) + A43 Skl(4) + [ ) + P
+ Si_](l)(AlOkISkl(O) + A4q; Skl(Z) + Ay Sk1(4) +)
+ gij(Z)(AZISkl(“ + A3 S+ ) + gij(3)(A30 S+ 43, 5,0 4+ )+ 0]
(20)
and
2K = p[kz""ugf),)uﬁf’,) + uzg,lt)ug,lt) + ug’z')ug’zl) + ] (21)

_ cos2{TY.
p=cos(£)

It is observed that k, is introduced into U for the strains S;;© and S;;'"’, which are associ-
ated with the coefficients 4,,, while &, is introduced into U for the term S,;)S, "’ and
into K for the term u{”, u{®}.

The correction factor &, is determined from the comparison of the lowest flexural branch

and the lowest extensional branch from the first order theory with those from the exact

where
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three-dimensional theory. In order to make the slopes of these branches to coincide when
both the frequency and wave number approach zero, the value of k; must be set to

k, = n/4. (22)

In order to make the phase velocities of the lowest flexural and the lowest extensional
branches approach that of the surface wave propagating along the diagonal axis in a crystal
as values of both the fequency and the wave number become large, k, must be equal, in
the dimensionless form, to

ky = CZP/Cﬁs (23)

where p is the density of a material and ¢ is the velocity of the surface wave|6].

The adjusted energy densities U and K are positive and definite if, in addition to the
usual requirements, k, > 0. The strain-displacement relations are not changed by correc-
tion coefficients. The stress equations of motion derived from U and K also remain
unchanged except that the inertia term pu$®), is replaced by (p/k,)us"),. The components
of stress are derived from the adjusted U using (16) and include then the correction co-
efficients.

5. PLATE THEORIES OF SUCCESSIVELY HIGHER ORDERS

The plate theories from the first to the fourth order are extracted from the Nth order
theory by using the truncation procedure and correction factors in U and K.

The displacement equations of motion are further examined for the monoclinic crystal
plates, such as AT—cut of quartz, where we set:}

Ci5 = Cp5 = C35 = C45 = ;6 = €26 = C35 = C465 = 0. (24)

The values of the other thirteen constants for the AT-cut quartz plate with x, the digonal

axis in the plane of the plate and x, the axis normal to the plate are computed from Bech-
man’s{7] six principal values and are, in units of 10° N/m?,

¢, = 8674 C4q = 38-61 ci2 = —826 Cy3 = — 742

0y, = 12977 ¢ss = 68-81 cy3= 2715 ca= 570

€33 =102-84 ¢4 =2901 C1q = — 365 €3s = 992

cs6 = 2°53.

(25)

Two sets of equations, for the essentially symmetric and the essentially antisymmetric
families of modes], respectively, are separated for the case of straight crested waves propa-
gating in x; direction only for each order approximation. The dispersion curves for real,
imaginary and complex numbers are explored in detail and are compared with those ob-
tained from the three-dimensional theory[2]. This comparison is presented for the essentially
antisymmetric family of modes in odd order theories (N=o0dd) and for the essentially
symmetric family of modes in the even order theories (N =even).

The zero order theory is not a very suitable one due to the missing coupling between
extensional and flexural modes[2] and therefore is not presented here.

+ An abbreviated indicial notation is used. A pair of indices i, j ranging over integers 1-3 is replaced by
one index p ranging over indices 1-6.
t The notation of [8] is employed.
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First order theory

By setting N =1 in (18) only the stress, strain and displacement components of the zero
and the first orders are retained. Then the energy densities become

U = I[T (O)S (0)+ T (I)S (1)+ (O)S (0)]

_ _ 26
RO = 3oty Pulhul® + ulPul ] =
and the stress equations of motion are:
1
T + 2 FO = Pk Puf%
27

- 1
e R

The stress—displacement relations are readily obtained from (9) and (16) using the adjusted
U by discarding those components u,™ for n > 1. The displacement equations of motion
of the first order theory are then obtained by inserting the stress—displacement relations
into (27):

2 1 _
$iju [“k YU+ B ky(8ulV + 8y ”1(1))] ot b Fi$ = pky™ul®),
Yok uil] + uil), — b szk{zb G + 52u') + k () + (0))} (28
+ - F M = pull),.

b

Considering then the straight crested waves propagating in the x; direction we set:

w0 4 (0),itxi—en)
i J
(1) = —i4 (1)ei({x1—wz) (29)
F“” F =0,
Then the dispersion relations for monoclinic crystal plates are, in dimensional form,
&2t - Q? —&, —kyz —514?-k1z
11 12 - 1 -

_=n . .
—Clzzklz k222+C22"‘Q2 Cs6Z ‘+‘C24 = (30)

. 4 .2 = = L2 = 2
—Clg"klz Cs6 2 +C24 Cs52 +C¢4_Q

4
and
1 4
20 Esg 22 ——kyz

z k2 Cs62 7 1
N s 202 . 4 =0 (31)
CseZ Css2° — Q) —csﬁ;t-klz

4 4 _
— —kyz —Esg—kyz  Cp2 +1-QF

n T

where €, = Cpq/Ces -
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The dispersion curves of the essentially symmetric family of modes are associated with
the dispersion relation (30), while the equation (31) yields the dispersion curves of the
essentially anti-symmetric family of modes.

The cut off frequency, for z = 0, are the exact ones. In order to have the correct slope of
the lowest flexural branch at z = 0 one must set

ky = /4. (32)

For Q> 1 and z > 1, the phase velocity of the lowest flexural branch approaches to [6],
from (31),

kz = Q/Z = Czp/CGG =0-901. (33)

Hence the phase velocity of the lowest flexural branch approaches that of surface wave in
monoclinic crystals.

The dispersion curves are then computed for AT—cut quartz crystal plate and are com-
pared with the dispersion curves obtained from the three-dimensional exact theory in
Fig. 1 for both antisymmetric and symmetric families of modes. It can be seen that the two
sets of curves match quite well for Q < 1-5.

z{im) zl{re)

Fig. 1. Dispersion curves of the essentially symmetric and antisymmetric families of modes
for the first order approximate theory.

Second order theory

Following the truncation process described above, we set N = 2 in (18). Then the energy
densities for the second order theory are
U = 4T, 05, @ + T, 05, + T,/95,® + T, V5,0 + T,»5,]

(34)
74 ¥4 0 o 1 1 2 2
K® = tplk, — “g. t)“g, :) + u§, r)uag, x) + uzg. t)ug, r}]
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and the stress equations of motion become
0, 1lro ~p,,(0)
7;] i + b F = pk u; 44
(35)
T,(J':’—%T (")+bF(”)-pu3"3, n=1,2.

The strain—displacement and stress—strain relations are obtained from (9) and (11), respect-
ively, with strain and displacement components of order higher than two discarded. The
displacement equations of motion are then obtained similarly as in the first order theory.

2 1 _
2Csjk¢{uk DU+ Ekl(‘sz"“km + 521:“1(1))] .t Fi® = pky"uf)

zcukl[kzp(u(l) ufld) + — 3b (521“k(2)+ 521:”1(2))} ,

o

T 1
T [2b (87, " + 8,0, V) + k @) + u{%) (u"') + u(z’)] + bF“’ = pull)
i [“k ;+ “(2) ~ I (521“k( Y Oyu! ))]

7
- é‘gczm[ (St + 550 + ”"‘(“(1) (1) } + 7 A F; @ "p“,(:,zr)t‘ (36)

Consider the straight crested waves propagating in the x, direction by setting

uj(O) - Aj(O)ei(€x1~wr)
(1) _ g4 (Dpilix —or)
u' = —i4 e

u_(2) — A‘(Z)ei(éxx-wr) (37)

F(O)_F(l) p(z) 0.
The displacement equations of motion will separate into two uncoupled sets and the

dispersion relations of the essentially symmetric family, equation (38), and the antisym-
metric family of modes are obtained.

4 4

51122_92 '—(_’12 ;k]Z —5147’;k12 0

4 4
_Elz_klz kzzz +522 "‘QZ 55622+ 524 —‘(512+4)Z

T n

4 4 =0. (38)
‘514;/‘12 CseZ” +0Cy4 Css2” + Cag — QF E(El4+4656)2

4 4 - = 2 2
0 i {(¢,;, +4z e (Cyq +4Csg)z ¢ z°+4-Q

The dispersion curves yield the exact cut-off frequencies at z = 0.
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As both z < 1 and Q <1, (38) gives the exact slopes of the branches, if k, = /4. As
z> 1 and Q> 1, it is found from (38) that the phase velocity of the lowest extensional
branch approaches to

Qjz = k, = 0-901

which is the phase velocity of the surface wave in monoclinic crystals[2].

The dispersion curves of the essentially symmetric family of modes are presented and
compared with the results from the three-dimensional theory of elasticity in Fig. 2. The
imaginary dispersion curves are not fully developed for this order theory. Only one complex
branch is found.

T e

\A

Approx-real, imag
—e-w Approx-complex
=~ Exact-reol,imag.
............ - Exact-complex

1 2 3
zire)

nN
¥

z(im)

Fig. 2. Dispersion curves of the essentially symmetric family of modes for the second order
approximate theory.

It may be noted that the same value of k&, = n/4 is used for correcting the slopes of both
the lowest flexural and the lowest extensional branches at z = 0 and Q = 0, and the same
value of k, is used for correcting the phase velocities of the same two branches when the
values of z and Q become large. As it shall be seen, no additional corrections are needed
in the higher branches of the higher order theories.

Third order theory
The energy densities are defined as
U(a) — %[Tij(msz'j(o) + Tij(l)sij(“ + T}j(Z)SijQ) + Tij(3)sij(3)
+ TS + T8, + T,95,41  (39)

E®) = %p[k “Pu(O) (0) + uf’i)u(ﬂ + u(Z)u(Z) (3)u(3)}

1ISS Vol. 10 No.2~-D
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and the stress equation of motion are:

TL® 4+ ; F(O) — pkz—Pu(O)

ij, i dy
(40)
1
ﬂﬁ—iET(”+me~p¢m n=1,2,3

Discarding the components of strain and displacement of order higher than three, the
stress-strain and stress-displacement relations are then obtained. The displacement equa-
tions of motion are then:

2 2
zcukx[uioz) +ufy + 7 ky(@2u ) + O + g(ézx“k(3) + 52&“3(3))} .

1
b Fi® = pky™?u?)

70.,kz[k2p(“(l) (“) ‘*‘ Py (52 uk( '+ 52kuz(2))]

,l

n
b 2,&1{2{) (G2t + g ) + = k (“(0) (0)) ( 1+ uﬁ?)J
I {1) {1
bF = PUG o
Zcukl[uk s “(,2) (521uk + guiM) +““(521uk(3) + 850 ))] 41)
" FYNNCINE SENE) ) 4 uly) (3 4 43) L e o
_EI;CZW (lluk + Oty )+—‘(“ 0 — ——(u + Uy bF = PUG

8
i {“fz) + “(3) 5 (02162 + 63 1*':(2))] .

i

in
4b Zﬂd

(37 ot + B0 + 57 G+ D+ 2 G+ D]+ 5 0 = pu.

The propagation of straight crested waves in the x, direction only is obtained by setting:

u W = A Meleximen n=0,2
U™ = —ig,meiEm=en =13 (42)
F™ =0 n=0,1,23.

The dispersion relation for the essentially antisymmetric family of modes is then, in dimen-
sionless coordinates, presented in (43).
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The dispersion curves for the essentially antisymmetric family of modes for the AT—cut
quartz crystal plate are computed from (43) and are compared with those computed from
the three-dimensional theory. There is no complex branch of the dispersion curves found
for third order approximation. The two sets of curves match very well as it is seen from

Fig. 3.

/|

Hi N Approximate
i ! ‘ -----Exact
I ] }
I | " R
4 3 2 1 [¢) | 2 3 4

z(im) z(re)

Fig. 3. Dispersion curves of the essentially antisymmetric family of modes for the third order
approximate theory.

Fourth order theory

The energy densities are

U9 = %[Tij(o)sij(o) + Tij(l)sij(l) + Tij(Z)Sij(z) + Tij(s)Sij(a) + Tij(4)sij(4)
+ Tij(l)gij(l) + Tij(Z)Sij(Z) + 'T"ij(3)gij(3) + ’]_'}j(4)§ij(4)] 44

4 - 0 0 1 1 2 2 3 3 4),.(4
R = 4oy Puf®uf®) + ufful)? + w2l + uu + i us?)

and the stress equations of motion are:

1 -
i+ 5 Fi = ply”Fuj (
45)
— 1
T - —Z: T, + EF,-("’ =pul", n=1,234

The displacement equations of motion are then obtained by substituting the stress-displace-
ment relations, where components of order higher than four are discarded, into the stress

equations of motion.
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2 1 _
%cukl[uk +uf+ k1(521uk D480V + < (521“1‘(3) + 62ty (3))] + BFj(O) = ply " "u

32
%c,jk,[kz"(u(” (1)) + = (521uk( Y Sy D) + = (521uk( )+ 52k“1(4))]

n 4 4
W 21kl[ (20w + 8t D) + ke (uid) + uid)) — g(“gczt) +uf?)
4 1
- () + uf® ] + - 5 F/ O = pul!)
18
eiju [ug‘zg +ufZ) - (521 D+ 8y V) + 5h (21 + 834 uz(3))] .

i i 8 8
5 C2ju [B (620u'® + 5P + i (u;clz) + “f,‘k)) ~ 3 (u(S) + uf¥ )] + b F; 2 = P“Szr):

8 32
teiu [“k i+ u(s) T (05 u® + 6 u?) + 7 Gy u® + 62kul(4))] )

24

3n 3) ) ©) + uf® 12 2, @ 1“6)
~ Cajui (521“k + Okt )+'—(“ )+ ( W Ui
12 1
— G D]+ O =

2
5 — (8w + 650V — — (521”k(3) + By 1 ))]

4
%cukl [uk i + u( ) —

i
»

n 2r 16 1
3 Cz;'kl[g (S + 6 ®) + S—n_(ul(cll) + “m) + - (u(s) (3))] + 7 5 F; * = P“f:r

By setting

uj(n) = Aj(n)el(én—wt) n=024
uj"') = —I'Aj("’ei(i"l‘wn n=1,3 47)

Fim =0 n=0,1,2,3,4
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we obtain two sets of dispersion relations for the propagation of the straight crested waves
in the monoclinic crystal plate. The dispersion relation for the essentially symmetric family
of modes is presented in (48).

The dispersion curves are computed from (48) for the AT-cut quartz piate and are com-
pared with the exact ones. It can be observed that the lower branches match with the
“exact” curves better than the corresponding branches in the second order theory, since
the higher order theory not only accommodates additional branches at higher frequencies
but also improves the accuracy of the lower branches.

The discrepancy for the complex branches are mostly due to the difference in the real
parts. The matching of the imaginary parts is very close. The mode shape corresponding
to a complex wave number can be expressed as the product of trigonometric and hyperbolic
functions. Hence the mode has the shape of a oscillatory variation within the envelope of the
hyperbolic function, and therefore in the case of matching the complex branches it is more
important to have close agreement of the imaginary parts rather than the real ones, since
the former control the amplitudes of the modes.

6. GENERATION OF HIGHER ORDER DISPERSION RELATIONS

An approximate theory of the order N (any N > 0) can be generated in a systematic
manner by using the truncation process (18). No additional correction coefficients are
needed for any higher order theory. The dispersion relations for the propagation of straight
crested waves in the x, direction only in crystal plates with monoclinic symmetry are then
obtained by substitution of the wave form solutions into the displacement equations of
motion. Since the process becomes tedius when N is large, a general method for generating
the dispersion relations of monoclinic crystal plates is described below.

The matrices of the dispersion relations are symmetric and their elements may be classi-
fied into four groups: 4,,,, B.. for elements on the main diagonal (the later is a three-term
group, two diagonal terms and one off-diagonal term); C,,, (two terms in one row) and D,
(two terms in one column) for the elements off main diagonal.

In terms of these groups the dispersion relations of an N-th order theory for the essenti-
ally symmetric and the essentially antisymmetric families of modes, respectively, can be
written as:

m

0 1 2 3 4 5
01do0 Co 0 Cos 0 Cos 0
I Bil DIE 0 Dp; (} D}N
2 Az, Cas 0 Cys 0
. 3 Bis  Diy 0 Dy —0 (49
4 Asa Ciys 0
5 Bss Dsy
N Ay
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and
m
0 1 2 3 4 5 N
0 BOO DOl 0 D03 0 DOS DO N
1 Ay Ci2 0 Cia 0 0
2 BZZ D23 O D25 DZN
3 Ass Ciy 0 0
n =0. (50)
4 B, Dys D,y
5 Ass 0
The terms in the groups are defined as follows (0 < m, n < N, for any N > 0):
Apm = Tzt +n*-0QF (n=m)
22 4 1%y, — Q2 Csz% +n?ly,
B, = (n=m)
55522 +n2644 _QZ
Con = {F e 0 #0707 (M2egs + ntse)z|  (n £ m)
(m? —n?)n (m* — n®)n
(n + m = odd)
25 2 ‘
(im(”clz+m)z ’ (n #m)
Dnm = '\: ;h
‘ - - =
‘\ * (m* — nd)n (n*C4 + m*Cse)z (n +m = odd).

The upper sign in the last two groups is applied to the essentially symmetric family of
modes and the lower sign is applied to the essentially antisymmetric family of modes. The
elements of determinants of dispersion relations are then generated with the help of (49)
and (50). It shall be noted that the correction coefficients k, and &, are applied in terms
By, By1, Coqs Doy as is seen, for example, in dispersion relations (43) and (48). The disper-
sion relation is in the form of a determinant, whose order s, for N-th order theory, is given by

I N
=3 [3(N+ 1) + cos? 7”] :

The dispersion relations for the fifth, sixth, ninth and tenth order theories are generated
by this method. The dispersion curves for the essentially antisymmetric (fifth and ninth
order theories) and essentially symmetric (sixth and tenth order theories) families of modes
are computed for AT-cut quartz crystal plate and compared with the curves obtained
from the three-dimensional theory (Figs. 5-8). The two sets of curves match very well
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Fig. 4. Dispersion curves of the essentially symmetric family of modes for the fourth order
approximate theory.

except for the complex branch in the fifth order dispersion curves for the essentially antisym-
metric family of modes, since the imaginary part of this branch is not yet fully developed;

it develops in the ninth order theory (Fig. 7).
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Fig. 5. Dispersion curves of the essentially antisymmetric family of modes for the fifth order
approximate theory.
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Fig. 6. Dispersion curves of the essentially symmetric family of modes for the sixth order
approximate theory.

Due to the increasing computational difficulties only the real and imaginary parts of the
dispersion curves are shown in Figs. 7 and &, for the essentially antisymmetric family of
modes for the ninth order theory and the essentially symmetric family of modes for the

tenth order theory, respectively.

v

)/
/) A

Approximate

T ===----Exact |

I

3" 4 5 [3) 78 9

z(im) z(re)

Fig. 7. Dispersion curves of the essentially antisymmetric family of modes for the ninth order
approximate theory.
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Fig. 8. Dispersion curves of the essentially symmetric family of modes for the tenth order
approximate theory.

7. CONCLUSIONS
The expansion of components of displacement in a series of simple thickness modes

enabled us to obtain an infinite set of stress equations of motion, strain-displacement
relations, constitutive relations and displacement equations of motion. The dispersion
relations for crystal plates with monoclinic symmetry were obtained for approximate
theories of order one up to the order four.

The dispersion curves for AT-cut quartz plate were then computed and compared with

the curves obtained from the exact three-dimensional theory. The close agreement of
both sets of curves indicates that the applicable range of frequencies for an Nth order
theory can be set at Q < N + L.

1.
2.

® Nk
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AGcTpakT — IIpuMeHAETCA pa3jioKEHHE CMELLEHHS! B PANObI, BHIPAXKEHHBIE YEPE3 MTeMEHTap-
Hble KojiebaHusi O TOJIHKHE, C 1ETb0 TIONYy4YeHUs TPHOIHKEHHBIX, ABYXMEPHEIX YpaBHEHUH
OBIDKEHMST IUIA KPUCTAJUTHYECKMX IUIACTHHOK HCXOJA H3 TPEXMEPDHOH TEODUH YNPYIOCTH.
HaroTcs npubnuxeHHblE TEOPUH OT MEPBOTO A0 YETBEPTOro mopsuka. McciaenyroTcs KpHBbI
JUCIEPCHH MJIsi KBapleBoit miacTuHkM AT cpe3a M CpaBHHBAIOTCS € PEINEHHSMH TPEXMEPHBIX
YpaBHEHHI i OECKOHEYHOMH IIACTHHKH,



